Physics Unique to a e^+e^- Linear Collider

Slawek Tkaczyk, CDF 15 February 2001

- Introduction
- Physics Cruxes
 - Higgs mechanism
 - New Strong Dynamics
 - Supersymmetry
 - Extra Gauge Bosons
 - Space-time structure
- Conclusions

Thank you to: Andreas Kronfeld, Joe Lykken, JoAnne Hewett

Physics Goals

- What breaks the electroweak symmetry?
- Experimental verification of the Higgs mechanism or alternative EWSB
- ▷ Discovery of the physics generating the Higgs boson(s)
- Supersymmetry and SUSY breaking, reconstruction of the fundamental theory
- ▶ Space-time structure: exploration of extra dimensions
- □ Gauge symmetries of forces, extended symmetries
- Comprehensive and high precision coverage of energy range above 200 GeV up to Multi-TeV
- Extrapolation of physics to areas far above directly reached to guide future directions
- The Linear Collider should be judged on how well it can help to understand the answers to these questions in the context of LHC!

SM Higgs Mechanism

- Theory: Masses of SM particles generated via SSB
- \triangleright Weak iso-doublet scalar field with non-zero field strength in the ground state, v=246 GeV
- ▶ Gauge boson masses acquired via the interaction with a scalar field → one Higgs particle
- ightharpoonup Self-interaction property of the scalar field ightharpoonup $M_H = \sqrt{2\lambda}v$
- Experimental verification: Establish Higgs mechanism for generating masses of fundamental particles (talk by Andreas Kronfeld on Jan 25 2001)
- Discovery of the Higgs boson: LEP2, TeV, LHC
- ▷ Determination of its Mass, BR, spin-parity,...
- Measurements of gauge and Yukawa couplings
- ▷ Generating masses by interaction with scalar field: cplgs ~ mass
- ▷ Reconstruction of the Higgs potential → Measurement of the Higgs boson self-couplings

Higgs Boson

- Copious production at the LC would permit measurements of several Branching Ratios
- In the SM all masses come from interactions with scalar field, thus ratios of BR should satisfy $BR_1 : BR_2 = m_1^2 : m_2^2$
- BR to $\gamma\gamma$, gg count charged and colored species, respectively
- $e^+e^- \rightarrow t\bar{t}H$ gives top Yukawa coupling
- Several Higgs doublets? Sum rule: $\sum v_i^2 = \mathbf{v}^2$
- Comparison to LHC?

Determination of the Higgs Potential

- Reconstruction of the Higgs potential, $V = \lambda (|\Phi|^2 \frac{1}{2}v^2)^2 \text{ from measurements of the Higgs boson self-couplings}$
- Higgs self-couplings: $\mathcal{L} = \lambda v^2 H^2 + \lambda v H^3 + \frac{1}{4} \lambda H^4$
 - \triangleright Trilinear coupling: via Higgs pair production, $e^+e^- \to HHZ$ or $e^+e^- \to \nu \overline{\nu} HH$
 - \triangleright Quadrilinear coupling: via triple Higgs production, $e^+e^- \rightarrow HHHZ$ or $e^+e^- \rightarrow \nu \overline{\nu} HHH$
- The tri- and quadri-linear cplgs are related in the SM, $M_H = \sqrt{2\lambda}v$
- Measurements of the Higgs boson self-couplings and Yukawa couplings establish Higgs mechanism for generating masses of fundamental particles.

Reconstruction of the Higgs Boson Potential

 Double and Triple Higgs boson production

- LHC
- · LC

Double Higgs Production at the LHC

SM Production mechanisms:

double Higgs-strahlung: $q\bar{q} \rightarrow ZHH/WHH$

WW/ZZ double-Higgs fusion: $qq \rightarrow qqHH$

gg double-Higgs fusion: $gg \to HH$

Double Higgs Production at LHC

- SM Higgs Boson production characterized by very large backgrounds and tiny signal
- \triangleright Typical cross sections are of the order of 10 fb^{-1}
- High integrated luminosity needed to generate large sample of double Higgs boson events
- So far no effective way to reduce overwhelming backgrounds
- Analysis in the hadronic environment extremely difficult and there is no simulation activity on Higgs selfcouplings.
- A window of opportunity exists in MSSM:
 - $\triangleright H \rightarrow hh$ production for small $tan\beta$
 - $ightharpoonup H o hh o \gamma\gamma b\bar{b} \text{ or } H o hh o b\bar{b}b\bar{b}$

Double Higgs Boson Production at LC

▷ SM production mechanisms:

double Higgs-strahlung: $e^+e^- \rightarrow ZHH$

WW double-Higgs fusion: $e^+e^- \rightarrow \bar{\nu}_e\nu_e HH$

- Small cross sections; σ_{HHZ} = 0.185 fb⁻¹ for M_H ~ 120GeV at √s=500 GeV; WW component even smaller at √s=500 GeV
- Maximum cross section for M_H ~ 120 GeV at √s=500 GeV; only 93 signal events with ∫ L = 500 f b⁻¹; large sensitivity to λ_{HHH}
- Backgrounds from other EW processes present
- \triangleright 4-/6-jet bkgs and small σ_{HHZ} makes the analysis challenging (S/B \sim 10⁻⁵)

Double Higgs Boson Production

- Signal signature: Z+4 b-jets
 - \triangleright b-jet energy: E(b) > 10 GeV
 - \triangleright separation of 2 b-jet combinations: $\cos\theta_{(b,b)} < 0.95$
 - high efficiency and purity of b-tagging algorithm

- Additional selection:
- \triangleright 2-jet mass combinations consistent with the Higgs mass or $Z \to bb$
- Event shape variables combined with a NeuralNet
- 4 b-jets and $Z \to q\overline{q}$ or $Z \to \ell\overline{\ell}$ combined with excellent tagging and detector reconstruction results in:
- $\delta \lambda_{\rm HHH} / \lambda_{\rm HHH} \sim 0.22 0.18\%$ Castanier et al., hep-ex/0101028 • $\sqrt{s}{=}500~{\rm GeV}, \ \int \mathcal{L} = 1{\text -}2~{\rm ab}^{-1}$

Reconstruction of Higgs Boson Potential at LC and LHC

Double Higgs Production:

 \triangleright Small SM signal swamped with irreducible $b\overline{b}b$ backgrounds from EW or QCD processes

LHC:

- QCD Backgrounds can be reduced to the same level as the signal, still detectable, but very small.
- Some window of opportunity left in the MSSM, m_H > 2m_h, when the double Higgs production is enhanced due to the resonant production

LC:

Double Higgs signals and Higgs self-couplings can be studied in an essentially background free environment.

Triple Higgs Boson Production:

Quadrilinear coupling unmeasurable at LC and LHC with expected luminosities.

Beyond the SM Ideas

- Other mechanisms of EWSB:
 - ▶ New Strong Dynamics
 - technicolor, strong WW scattering
 - composite Higgs boson, topcolor
 - - minimal
 - non-minimal
 - - large
 - warped
- ...all predict a rich spectrum of new particles

Strongly Interacting W & Z Bosons

- Without a fundamental Higgs boson with $M_H < \mathcal{O}(1 \text{ TeV})$ an alternative scenario of EWSB provided by new strong interactions
- EW gauge bosons become strongly interacting at energies above O(1 TeV) to comply with unitarity requirements of the W_LW_L scattering
 - new strong interaction characterized by a scale Λ* of order O(1 TeV)
 - novel resonances predicted in the O(1 TeV)
- Such scenarios can be analyzed in the elastic scattering of W bosons at the energies $\sqrt{s} \sim 1$ TeV at high energy LC and LHC
- Properties of the new resonances and measurements of the gauge boson couplings could reveal the underlying strong interactions
- At LC, WW interactions can be investigated in reactions: $e^+e^- \rightarrow W^+W^-\nu\overline{\nu}$ and $e^+e^- \rightarrow W^+W^-$
 - \triangleright all possible combinations of isospin and angular momentum can be realized in the first process in e^+e^- and e^-e^- .
 - cross sections small unless resonances are formed.
 - essential to have another way to probe modes with composite Higgs bosons (via precision measurements of Triple GC and Quartic GC)

Gauge Bosons - Triple Gauge Couplings

- Accuracy of the parameters describing the WWZ and WWγ vertices:
- \triangleright SM precision on κ_{γ} which contributes to the W anomalous magnetic dipole moment, is of the order $\Delta \kappa_{\gamma} \sim (10^{-3} 10^{-4})$ (including radiative corrections)
- b the expected effects of new strong interactions: few parts in 10^{−3}
- Estimated TGCs limits are of the order of EW radiative corrections; but they scale with integrated luminosity
- Further theoretical studies of the systematics of non-leading corrections will be useful.
- The limits on the TGCs translate to physics reach of Λ_{*} ~ 5 TeV > Λ_{EWSB} ~ 3 TeV for the EWSB sector in W pair production, confirming that any reasonable scenario of the symmetry breaking can be probed, since new physics is expected to occur below Λ_{EWSB}.

Supersymmetry

- Best motivated extension of the Standard Model
 - □ connection to gravity
 - grand unification
 - \triangleright mitigates the hierarchy problem and predicts $sin^2\theta_W$.
 - \triangleright Mass scale of SUSY, $M_{SUSY} \sim 1 \text{ TeV}$
- SUSY exploration:
- ▷ LHC analyses:
 - specific paths of cascade decays can be followed
 - mass differences measured well
 - can distinguish model types

⊳ In LC:

- model independent comprehensive reconstruction of the entire SUSY spectrum: masses, production and decay, spin-parity
- individual production of sparticles, robust, very precise picture, stable extrapolations to high scales
- measurements of couplings to prove SUSY and to distinguish SUSY from other models
- fully explore the SUSY parameters
- upgrade to higher energies is probably needed.
- Analysis of SUSY breaking reconstruction of the fundamental theory → high scales?

Reconstruction of the Underlying Fundamental Theory

- Extrapolate from the basic parameters at the EW scale to the fundamental theory at high scale
 - in most studies of SUSY models assumptions are made at a high energy scale.
- Start from the measurements (with uncertainties!) done at lower energies and extrapolate to higher energies using RGE.
 SUGRA; LHC uncertainties only
 SUGRA; LC and LHC uncertainties

Blair, Parodi, Zerwas

Distinguishing the SM H and MSSM h

- MSSM: h, H, A, H $^{\pm}$ SM: H_{SM}
- If M_{SUSY} and M_A are large, a neutral Higgs boson may be the only new object observed at Tevatron, LHC and LC.
- Its SM/MSSM origin may be indirectly inferred from the precise determination of the Higgs profile, BR, couplings and Γ.
- Many theoretical uncertainties:
 - SM Higgs cplgs to quarks limited by m_q and to gluons by α_S
 - MSSM Higgs cplgs to quarks limited by corrections from gluino loops
- Sensitivity to SM/MSSM from determination of BR shown as upper bounds of the MSSM solutions distinguishable from the SM BR predictions.
 TESLA L = 500 fb⁻¹

New Phenomena

- SUPERSYMMETRY need not to be realized in nature
- SUSY can be augmented by other new physics
- Either way the LC or any other machine need to be prepared for unexpected!
- Formal theory used as a guide to phenomenologically rich ideas:
- Extended Gauge Theories: SO(10), E6 new gauge bosons, new fermions
- Instead of adding extra fields (SUSY,...), add extra dimensions to the universe.
- Approach hierarchy from a geometric point of view.

Search for Extra Gauge Bosons

Extra Gauge Bosons - Couplings

- Resolution power for different $m_{Z'}$ based on measurements of leptonic observables at $\sqrt{s} = 500$, 800, 1000 GeV with a $\mathcal{L}_{int} = 1$ ab⁻¹
- Leptonic couplings of the Z correspond to the various models.

W' Studies at LC

Discovery Reach for W' (GeV) (L=500 fb⁻¹, 2% sys)

Extra Gauge Boson - W' Studies

- Analysis of W' production in $e^+e^- \rightarrow \nu\bar{\nu}\gamma$ at $\sqrt{s} = 500~GeV$
- Sensitivity to W' masses up to several TeV, depending on energy, luminosity and models.
- Constraints on W' couplings for $m_{W'}=1.5~TeV$ using combinations of σ and A_{LR} measured in polarized beams, 90% for e^- and 60% for e^+ .
- A systematic error of 2% (1%) was used for σ (A_{LR}).

Space Time Structure

- Novel approaches to solve the hierarchy problem in the SM, between the Planck scale, the apparent scale where gravity becomes strong, and the EW scale of particle physics.
- Several scenarios proposed in which space is extended by extra dimensions, compactified at a radius R.
 - b towers of massive Kaluza-Klein states
 b towers of massive Kaluza-Klein states
 c towers of massive Kaluza-Klein states
 b towers of massive Kaluza-Klein states
 c towers of massive Klein state
- Gravity may become strong in extended space already at TeV scale and the hierarchy problem is non-existent.
- Gravity appears weak in ordinary 4-dim space as we only observe its projections onto the wall.
- Inspired by String Theory, the effective Planck scale can be identified with the string scale M_s;
- Very little known about the compactification.
- Many variants of the model (metric of compactified space, fields on the brane, in the bulk, etc...)

Extra Dimensions

- Large Extra Dimensions (Arkani, Dimopoulos, Dvali)
 - $(n=2 \text{ as large as } R \sim 1 \text{ } mm; n=6 \text{ } R \sim 10 \text{ } fm)$
 - \blacksquare SM stuck on 4-dim wall, at least up to E $\sim 1 \text{ TeV}$
 - real emission of gravitons $e^+e^- \longrightarrow \gamma G$
 - \bullet virtual exchange of gravitons $e^+e^- \rightarrow f\overline{f}$
- Warped via Localized Gravity (Randall, Sundrum)
 - weak scale generated from Planck scale via warp factors
- Explore structure of space-time manifold (Non-Commutative FT)
 - conventional coordinates are represented by non-commuting operators.
- In some models SM particles can be in the bulk
- Each scenario predicts a distinct set of signatures at $\sqrt{s} \sim 1$ TeV (KK towers interact with SM fields)
- Future Accelerators can test these ideas and possibly yield information on the geometry of the extra dimensions of the universe (number, size, curvature,...)

Extra Dimensions

- Phenomenological consequences at LC:
- $\triangleright e^+e^- \rightarrow \gamma E$
 - radiation of KK gravitons
 - sensitive to M_S and N
- $ightharpoonup e^+e^-
 ightarrow f\overline{f}$
 - exchange of gravitons
 - ⇒ sensitive to M_S and spin 2
- The precise control of SM reactions achievable at the LC makes these measurements possible.
- Through angular distributions at LC can provide information on physical nature of KK towers.
- Cross section for $e^+e^- \rightarrow \mu^+\mu^-$ including the exchange of KK gravitons

Slawek M. Tkaczyk

Fermilab LineDrive Series

Indirect Tests of Extra Dimensions in $e^+e^- \to f\overline{f}$

- Angular distributions and polarization asymmetries become sensitive probes of the spin of new particles
- Two observables: bin integrated angular distribution and Left-Right asymmetry for the process e⁺e⁻ → b̄b̄ at √s = 500 GeV; SM shown as a solid histogram, while points are for M_s=1.5 TeV with λ = ±1 for specific models.

- Differential cross section for the process e⁺e[−] → ff̄ for Spin-2 Graviton exchanges contains both cubic and quartic terms in z=cos(θ)
- Combined fit of angular distributions of kinematically accessible ff states, as well as \(\tau\) polarization
- 60% efficiency for heavy quark tagging, P_e = 90%, ISR effects included
- Observed statistically significant signal for Graviton exchanges.

Indirect Tests of Extra Dimensions in $e^+e^- \to f\overline{f}$

 Potential search reach of the M_s, a scale at which Gravity becomes strong

- Qualification of the extent to which Spin-2 exchanges are distinguishable from other new physics sources
- Perform a fit to functions expected for new vector boson exchanges
- Observed poor quality of the fit up the discovery limit $(M_S \sim 5\sqrt{s})$
- Particular deviations induced by Spin-2 Graviton exchanges can be distinguished from those due to lower spins, such as new vector bosons (Z') or scalar-ν̃ in R-parity violating models, for string scales up to discovery limit.

Indirect Tests of Extra Dimensions in $e^+e^- \to f\overline{f}$

- Discrimination between extra gauge boson Z' and $\tilde{\nu}$ exchanges of Spin-1 and Spin-0 particles
- Explore the influence on the angular distributions
- Two-parameter fit of the simulated data performed to a trial distribution of the form: $\sim A(1+z)^2 + B(1-z)^2$
- In the SM and any Z' cases A,B are constant, B depends on $z = cos\theta$ in case of $\tilde{\nu}$ exchange. T.G. Rizzo, hep-ph/9907344

- All 5 regions are statistically well separated from each other.
- Clearly distant solutions from the SM point
- In case of ν̄ exchange the value of A is in agreement with the SM, while in Z' case the A,B are altered.

Signals of Brane Fluctuations

- Extra dimensions with Branes offer a new explanation of the hierarchy problem.
- Non rigid Branes
 - To control the position of the Brane in all dimensions new scalar fields are introduced ('Branons')
 - Branons can interact with particles on the brane
 - \triangleright Their signature is a rise to E signal in $e^+e^- \rightarrow \gamma E$
 - Branon properties (energy and angular spectra) similar to KK gravitons propagating in 6 extra dimensions
 difficult to detect.
- Elastic Fluctuations of Branes (Nylons)
- Interactions of Branons and Nylons with each other and SM fields provide interesting testable consequences which can be studied at Future Colliders in time for a Snowmass meeting...

Conclusions

- LC can make some important measurements which can't be made elsewhere.
- The cleanliness, flexibility, and versatility of the LC compensate the higher and broader reach of the LHC.
- Essential elements of Higgs mechanism can be well established.
- SUSY particle spectrum and breaking mechanism can be analyzed experimentally.
- Structure of space-time can be probed at short distances.
- Extended gauge symmetry theories can be explored.
- Difficult to anticipate how many of new particles have mass below/above 1 TeV, and value of the LC increases with energy, in the absence of a signal.
- All phases of e^+e^- linear collider facility, $\sqrt{s} = 500$ GeV multi-TeV and high luminosities promise new deep insight into the secrets of Nature!